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Abstrael. Verma representation theory for classical Lie algebra i s  extended to study the 
representation of quantum universal enveloping algebra (quantum algebra) for the non- 
generic case that q is a mot  of unity. On certain subspaces and quotient spaces of  the 
" G I  1111 >paLC. IIIIILC- all" IIIII,IIIF-"I,IIFII~lVll l l  l,lC""Cl"lC "I "'Urculrlpuaaolr ' rprrar , l rru"lrs 

of r1,,(3) = U,,(s1(3)) are obtained in explicit matrix forms. 

.,..-. ..... e.:.. ..>:.c.:.. I: :...,:...~...~~,...:.~ LI-.-- ...-... :.-. 

1. Introduction 

At present, the quantum algebra U,(L) ( a  q-analogue of universal enveloping algebra 
of a classical Lie algebra L )  is an important topic in mathematical physics [I-31. This 
is because of its crucial role in nonlinear integrable systems of physics through the 
Yang-Baxter equation (YBE)  [4, 51. The representation theory of quantum algebra is 
progressing rapidly from different directions [6-121. Although the q-deformed Boson 
realization [ 10-121 is a useful method to construct explicit matrices of representations 
for quantum algebras, it is only powerful enough for symmetric representations of 
quantum algebra ( A , ) q  = U,(sl(/+ I ) )  and (CI)q = U,(sp(Z/)). In order t o  obtain the 
representations with another symmetry, we have studied the regular representation 
with ( A , ) q  as an  example [13], which is closely related to Vera's theory [I41 for Lie 
algebra. 

In this paper we will generally consider an  extension of Verma's theory for the 
quantum algebra with s1,(3) as  an  illustration. Since the discussion of the generic case 
that q is noi a root of uniiy is oniy a q-deformaiion of ihe Lie aigebra case (for the 
study of Lie algebra A,, see [15] and [16]), we will mainly pay attention to the 
non-generic case that y is a root of unity, i.e. q p  = 1 ( p  =3 ,4 ,  5 . .  .). 

We first describe the main results and some technical details in this paper as follows. 
In section 2 ,  through a quite lengthy calculation and  by induction, we write down 
some y-deformed commutation relations (q-relations) among the bases of s1,(3). These 
L ---" -_-- L L . . * . . L : . . ~ + L ~  I n..nlnr.. e ~ f t h n  Dn;nr .& l2;rGhAR U/:++ Ino \~ i ) thnn .~ -  
VdJSDP,SC,,VJS,, " J  , " " , , , ~ L " C y - ~ " L L , " ~ Y ~  "1 L1.. I " I I I C Y . C - Y l l r . l l " I I -  ...I I \'.'*'I LI*."ICL,, 

[8,18] for the quantum algebra into account. I n  section 3, we explicitly construct a n  
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infinite-dimensional representation (quantum Verma representation) on the so-called 
quantum Verma module with a lower weight by making use of the obtained q-relations. 
In order to get the finite-dimensional representations, which are necessary for 
constructing solutions of the Y B E ,  two distinct classes of invariant subspaces are 
indentified by some extreme vectors on the quantum Verma space in section 4. As the 
induced transformations of the quantum Verma representation on the corresponding 
quotient spaces, the finite-dimensional representations are constructed explicitly in 
both the generic case in section 5 and the non-generic case in section 6 .  In the former 
case, the obtained finite representations are either irreducible o r  completely reducible. 
In the latter case, the extreme vectors are defined by the non-generic condition q p  = 1 
( p  = 3,5,. . .) and our construction leads to the finite-dimensional indecomposable 
(reducible, but not completely reducible) representations. 

Finally, it is pointed out that  these new representations can be  used to construct 
non-generic R-matrices [I71 for Y B E  through the universal R-matrix of s1,(3) [18]. 

4 

2. The q-deformed commutation relations and bases for s1,(3) 

The quantum algebra s1,(3) is an  associative over the complex number field C and 
has generators E;= E t ,  F, = E ;  and H , ( i =  1 ,2 )  that satisfy the basic q-deformed 
commutation relations 

[H,  , E :] = *2E: [ H , ,  E;] = F E ;  

[ H,, €3  = F E :  [ H 2 ,  E:] = 1 2  E ;  (2.1) 
[ E ! ,  Fjl=&,[Hil [ H ; ,  H,1=0 i , j = 1 , 2  

and the Serre relations 

EF2Ef*,  - ( q  + q-')E:E:,, Ef + E?*, E:  = 0 (2.2) 

where [ f ]  = (4'- q-')/(q - q - ' )  is defined for any operator and  number f and q E C. 
When q +  1, (2.1) just are the commutation relations satisfied by the Chevalley 

basis of classical Lie algebra A,=su(3),  and { E , ,  F,}  corresponds to the simple roots 
a,=e,-e,anda~=e~-e,,whene,=(l,O,O),e2=(O,1,0)ande,=(0,0,1).Sowe 
need to find the third pair { E,, F3} corresponding to the third positive root a, = a ,  + a2 = 
e ,  - e, for the construction of the basis of s1,(3). According to Rosso [ X I  and Burroughs 

( 2 . 3 )  
[181, 

€3 = €1 E, - qE,E, F, = F,  F. - qF2F, . 

It follows from (2.1) and (2.2) that 

E ,  E,= q - 'E ,E ,  €2 €3 = qE, E, 

FIE,= E,F, + E,K, F, €3 = €3 F2 - qE, K T '  (2.4) 

K,E,=qE,K,  K T ' E ,  = q- 'E ,K; '  

where K ,  = qHl  and K 2 =  qHz. By induction we prove 

E,€;" = q - m  € ; " E 2 -  q - ' [ m ]  E;"- '€ ,  

E,  E y = q"E 7 E, 
F ,  E ;  = E:F,  + [ n ] E ,  E:'-' K ,  
F,E: = EYF;- ( 4 -  q - ' ) - ' E y - ' ( q " - ' K j  - q ' - " K ; ' )  

E , E ; = q - " E Y E ,  
F,ES= E : ' F z - q [ n ] E , E S - ' K ; '  

i = 1 , 2 .  
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Using (2.11, (2.4) and (2.51, we can easily arrange the basis for s1,!(3) as 

E;'#E,"'EY>F;IF~zF;.H;# H;' (2.6) 

(where m,, n, and sj EZi = {0,1,2, .  . . 1, i = 1 , 2 , 3 ;  j = 1 , 2 )  because we may commute 
any of the generators E#, F, and H,. This is just a special case of the q-analogue of 
PBW theorem for S I , ( / +  1 )  proved by Rosso [8], which is a generalization of the PRW 

theorem for Lie algebra. 

3. Quantum Verma module for s1,(3) 

Because an associative algebra itself is a linear space, the left transformation L:  
sI,(3)+End(slq(3)) defined by 

L ( g ) X = g . X  Vg, X E s1,(3) 

determines an  infinite-dimensional representation of s1,(3), which is called the left 
regular representation. As q +  1, it becomes the master representation of su(3) [15], 
which is a subrepresentation obtained by  constraining the regular representation of 
su(3)-universal enveloping algebra in its subalgebra su(3). 

Let Yt be  the Cartan subalgebra of s1,(3), which is generated by H, and H,. I f  A 
AEZ*, i.e. A is a linear function on X, then {e., Hj-A(H,) I l i=I ,2 ,3 ;  j = l , 2 ,  
U = X ( O , .  . . , O ) }  generate a left ideal I (A)=sIq(3)  (E;=, E.+X;=, (ff-A(Hj))) ,  which 
is a left invariant subspace of s1,(3). The corresponding quotient space 

V(A) E V(A,, A 2 1  

= s l ~ ( 3 ) / I ( A ) ( A j ~ A ( H , ) ) :  {fA(m, n, k )  = E;'E;E: mod I ( A ) ,  m, n, k e H + )  

with the action of s1,(3) induced by L is called the quantum Verma module (a 
q-analogue of the Verma module for classical Lie algebra). When 9' 1, i t  becomes 
the usual Verma module, an  indecomposable standard cyclic module with the lowest 
weight A :  ( A , ,  A,) [19]. Here, IA)=f , (O,O,  0) is such an extreme vector that 

HJA) = A ( I A )  F; lA)  = 0 i = l , 2 .  

Using (2.5) we explicitly write the representation p'"' of s1,(3) on the quantum 
Verma space V(A) as follows: 

Hlf,(m, n, k )  = (2m - n + k + A ,  )fA(m, n, k )  

H,fA(m, n, k )  = ( 2 n  - m +  k+A,lf,(m, n, k )  

E , f , ( m , n , k ) = f , ( m + l , n , k )  

F , L ( m ,  n, k )  = q'qk] fL(m, n + 1, k - I )  - [ml[m - 1 - n + k + A , l f ( m  - 1, n, k )  

E2fA(m, n, k )  = q-"%(m, n +  1, k)-q-'- '[mlf,(m - 1, n, k +  I )  

F>f,(m, n, k )  = qL[n][l  - A 2  - n]f,(m, n - I ,  k )  - q'-"-A2[klf,(m + 1, n, k -  I ) .  

According to Rosso [8], some theorems about representations of classical Lie 
algebras can be directly generalized to the quantum algebra in the generaric case. So, 
when A is a dominant integral function, i.e. A ( H , ) = A ,  € B - = { - l ,  -2,. . . ) , t he  Verma 
representation pCAl may induce some finite-dimensional representations on certain 
quotient spaces. These representations, which are irreducible for the generic case, are 

(3.1) 
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no  longer irreducible for the non-generic cases. This is because [ap] = 0 when 9 0  = 1 
and a E H +  and some new extreme vectors result from [ a p ]  = O .  We need to point out 
that what we study here is the quantum Verma module with the lowest weight and the 
discussion about the quantum Verma module with the highest weight is just parallel 
to the  former discussion. In particular because of the symmetry of weights under the 
Weyl group, the finite-dimensional representations resulting from the quantum Verma 
representation with highest weight a re  equivalent to those resulting from the quantum 
Verma represe:ta!io: wi!h !owes! weight -he:: 9 is CO! a roo: of =city. For the above 
reasons we only need to study the case with lowest weight. 

4 .  Two classes of invariant subspaces 

In this section we will determine two classes of p'"'-invariant subspaces, on which 
pi*' subduces new representations. 

4.1. Thefirst class ofinuarianr subspaces 

Invariant subspaces of the first class, 

S,=s1,(3).u: {E;"E;E:u lm,  n, k E Z + )  

are standard cyclic modules [ 191 defined by such extreme weight vectors v that 

p'^l(  F , ) u  = 0 H , v =  M ( H , ) u - M , v  i = 1 , 2  (4.1) 

where M ( E X * )  is a weight function so that M , - A , a O  or  M , - A , > O  for M , = A , .  
The !owes! weights of these s t m d d  cyc!ic modc!es are .V: ( M i ,  .Mi!. 

The weight space V[ M , ,  M J  = Vep (a ,  p E Z) with weight ( M ,  , M 2 )  can be labelled 
by two indices a and p :  

a = $ ( 2 M ,  + M 2 - 2 A  I - A I )  p = f ( 2 M 2 +  M , - 2 A 2 - A l )  

It  is easy to see that Vap = V [ M , ,  M Z ]  is spanned by the weight vectors 

{fA(a - k, p - k ,  k) lk  = 0,  1 , 2 , .  . . , min(a, p ) )  
w h e r e m i n ( a , p ) = a , i f a s p , a n d  min ( r r , p )=p .  if a>p. 

Let 

be an  extreme vector satisfying (4.1). Then the equations p i A 1 ( F , ) u  = O  and p '^ ' (F . )u  = O  
respectively give 

q " " [ k +  l]Ch+, - [ U  - k ] [ a  - p  + k + A ,  - I]Ch = 0 

9 2 - P ' X - A ~ [ k +  I]Ck+, - 9 * [ p  - k][l - p  + k -AJCL = O .  
(4.3) 

Because the recurrence relations (4.3) determine some extrema1 vector U, they must be 
identical and  thereby a and p must be  chosen carefully. Then, 
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i.e. 

(4.4) (1  - q 2 f P - L ) )  = q 2 ( = - P ' + q 2 f l ~ * , l ( q - 2 "  - q - Z k ) ,  

For three well-defined solutions of (4.4) 

(1) k = a = O  p=l-Ai  

(11) k = P = O  a = l - A ,  (4.5) 

(111) a = p  z 2 - L  - A 2  

we get three extreme vectors 

v , = f , ( O , l - A , , O )  "2 =L(l - A I ,  0,O) 
-2--*, - A .  

U,= 1 - (  ([i]-'q-"i[3-A,-A2-i][i+A,-2]) 
*=,-A, ! - 3 - A ,  

X f , ( 2 - A l - A 2 - k , 2 - A , - A 2 - k ,  k )  

where Cue C, U , ,  v2  and U, respectively possess weights 

M(l) = ( A ,  + A 2 -  1,2 - A 2 )  

M(3) = ( 2 - A 2 ,  2-Aj ) .  

M ( 2 ) =  (2-  A , ,  A I  + A , -  1) 

The corresponding subspaces S ( v , ) ,  S ( v , )  a n d  S(u,)  are denoted by S , ,  S ,  and S, 
respectively. It needs to be pointed out that S, is ill-defined by (4.6) for the non-generic 
case because [ a p ]  = 0 (a E Z+). 

4.2. The second class of invariant subspaces 

For the non-generic case that q is a root of unity, it follows from [ a p ]  = 0 (a E Z )  that 

FifA(aP, n, u , P ) = O  
(4.7) 

F 2 f , ( m ,  a,~, a,p)=O for a,, a?, ~ , E Z +  

that is to say, fA(a,p, a,p, a , p )  are extreme vectors that satisfy 

F;fn(a ,p ,a2p9 a,p)=O i = 1 , 2  

H , f , ( a l p ,  a2p,  a , p )  = [ (2a ,  - a , + a d p +  A,lf,(a,p, a , ~ ,  ~ J P )  (4.8) 

H2fA(a1 P, 0 2 ~ .  a , ~ )  = [(2a2-a,  + U,)+ A , l f , ( a , ~ ,  a,~, a,~). 

For given a,, a2 and a ,  the extreme vector fn ( a l p ,  a,p, a s p )  defines an invariant 
subspace S [ a ] =  S(a,, a*, a,): { f , ( m ,  n, k ) l m  a a , p ,  n 2 a,p, ka a , p ) .  

In this non-generic case, though the invariant subspaces S,, SI and S, are still 
invariant, they are no longer irreducible for some situations. For example, if S[a] c Si, 
then S [ a ]  is an  invariant subspace of S,. We will discuss the latter in detail. 

5. Representations on quotient spaces for the generic case 

From Verma theory we know that the quotient module of a maximal proper submodule 
is finite-dimensional and irreducible so long as  the highest (or  lowest) weight is the 
dominant integral weight. This conclusion can  be generalized to quantum algebra, but 
we must distinguish two cases, generic and  non-generic. For the generic case, the 
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conclusion is the same; for the non-generic case, the dominant integral weight results 
in a finite-dimensional representation, but it is not irreducible for some situations. In 
this section, we only discuss the generic case. This is the basis for the discussion of 
non-generic case in the next section. 

In contrast to the results or classical Lie algebra for A ,  and A2eZ-, the subspace 
S,, = S, + S2 is a unique maximal proper submodule generated by E:-". and El-*'  and 
thus the quotient space n(A) = V(A)/S,, is a finite-dimensional p[*'-invariant subspace. 
On iiiis space, p!"! induces a finiie-dimensionai represeniaiion, which is irreducible 
for the generic case. 

Now we consider the basis vectors for Q ( A , ,  A 2 ) - C l ( A ) .  Define 

f ( m ,  n,  k )  = L ( m ,  n, k )  mod (S, + S J  

then f ( l  - A , ,  0,O) =f,(O, 1 - A 2 ,  0) = 0. Because 

E;€;"= 1 C , ( m ,  n ) E ; E r - ' E ; - '  
, i o  

there are some constraints among the vectors f A ( m ,  n, k ) ,  

fA(l - A l ,  n, k )  = -qmn 1 C.(1 - A , ,  n)q""-"'f,( l  - A l  -s,  n -s, s + k )  ( 5 . 2 )  
_ - I  

where C , ( m ,  n )  is given by the following recurrence relations: 

C,,(m, n )  =9-mn 

C,+,(m, n + 1) = q 

C,(m. n + l )  = q2"-"'[C.(m, n ) - q - 2 [ m + l  - s ] C , - , ( m ,  n ) ] .  

Just as for the case of Lie algebra A,[15] ,  the above constraints result in complicated 
expressions for representations on C l ( A ) .  Therefore, we only study the representations 
induced by p"' in an explicit form for some special case. 

It is observed from (3 .1)  that the subspace ./(A): ( f A ( m ,  1 -A,+n,  k) lm,  n,  k e E + )  
is an invariant subspace. This is because the action of p'*' does not change a vector 

V(A)/J(A):  ( F , ( m , n , k ) = f , ( m , n ,  k)modJ(A),  m, E Z + ,  n=O, 1 , . _ . ,  -A2},  the rep- 
resentations PI* '  induces a representation 

H , F , ( m ,  n,  k ) =  ( 2 m  - n +  k + A , ) F , ( m ,  n, k )  

H2FA(m,  n, k )  = ( 2 n  - m + k + A 2 ) F A ( m ,  n,  k )  

E , F , ( m , n , k ) = F , ( m + l , n , k )  

[ m - n l C , ( m ,  n )  ( 5 . 3 )  Z,*--n,--l ,  

fA(m, n, k ) ( n  3 i - A 2 )  into fA(m, n', k ) ( k ' <  i - A 2 ) ,  the qiioiieijt space Q ( h )  

F , F , ( m ,  n, k )  = + A 2 -  n - l ) q ' " [ k ] F , ( m ,  n + 1, k - 1 )  - [ m ]  ( 5 . 4 )  

x [ m - 1  - n +  k + A , ] F , ( m  - 1 ,  n, k )  

E,F,(m, n, k ) =  8(-A2-l - n)q-" 'F , (m,  n +  1, k ) - q - " - ' [ m ] F , ( m -  1, n, k + l )  

&FA( m, n, k )  = q k [  n ] [  1 - A 2 -  n ] F A (  m, n - 1, k )  - qi -*2-"[  k ] F , ( m  + 1, n, k - 1 )  

where 

for x>o  
for x < 0. O(x) = 
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For the special case of A,=O, the representation (5.4) is rewritten as follows: 

H,F, (m,  k ) = ( 2 m + k + A , ) F A ( m ,  k )  

H,F,( m, k )  = ( k  - m + A J  FA ( m ,  k )  

E,F,(m, k ) = F , ( m + l ,  k )  
F,FA(m,  k )  = - [ m ] [  m - 1 + A  I + k ] F , [ m  - 1, k )  
E2FA(m, k ) =  - q - ’ [ m ] F , ( m - l ,  k t  1 )  

F , F , ( m , k ) = - q [ k ] F , ( m + l , k - l )  

(5.5) 

where F,(m,k)=F,(m,O,k). 
Define the subspace W ( I )  ( I E Z ~ ) :  {F,(m, k ) l m +  k =  1). Because (5.5) result in 

H,W(I),H,W(I),E,W(r),F,W(l)c W ( I )  

E , W ( l ) c  W ( I + l )  E ,  W ( l  - A I ) = { O }  

the subspace 

khv8riil!It 8.4 I!s:~!C!ic!!tsp~e ? r ! A i ) = Q ! * i , * i = ~ ) i ~ [ A i ~ :  {F[,m, k / ,? , )=FA(m,  k )  
mod S ( A , ) l O S m + k S - A , }  is finite-dimensional, On ? r ( A l )  (5.5) induces a finite- 
dimensional representation 

H,F(m, k l A , )  = (2m + k+A, )F(m,  klA,) 

H A m ,  k l A , ) = ( k - m ) F ( m ,  !4At )  
E,F(m, k lA , )=  8(-1 - A ,  - m - k ) F ( m + l ,  klA, )  

F i F ( m ,  klA,)  = - [ m ] [ m +  1 + A , + k ] F ( m - 1 ,  k l h , )  

E,F(m, k J A , ) = - q - ’ [ m ] F ( m - l , k + l l A , )  

F,F(m, k lA , )=  - q [ k ] F ( m + l ,  k - l l A , )  

with the dimension 

dim r r ( A , )  = f (  1 - A , ) ( 2  -A,). 

6. Representations for the non-generic case 

6.!. Ec rcpr.sm!a!ions ind!!ccd b;J p‘h’ 

We notice that S [ a ]  is an  invariant subspace. On its quotient space n[a,, a,, a,] = 
V ( A ) / S [ a ] :  { v ( m ,  n, k ) = f , ( m ,  n, k )  mod S [ a l l O s  m s a , p  - 1 ,  Os n s a , p - l ,  Os 
k S  a,p- 1 ) .  p‘”’  induces a finite-dimensional representation 

H , u ( m ,  n, k )  = (2m - n  + k +  A , ) v ( m ,  n, k )  

H,u:m, E ,  k ) = ( 2 i ;  = m  t k + A 2 ) Y : m ,  ii, k )  
E,v(m, n , k ) = O ( a , p - 2 - m ) v ( m + l , n , k )  

F,v(m,  n, k )  = 8 ( u 2 p - 2 - n ) q A [ k ] ~ ( m ,  n + 1,  k -  1 )  - [ m ]  

x [ m  - 1 - n +  k +  A,]u(m - 1 ,  n, k )  (6 .1)  
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E , v ( m ,  n, k )  = B ( a , p - 2 - n ) q - ' " v ( m ,  n +  1, k )  

- q-"- ' [m]e(a ,p  - 1 - k ) u ( m  - 1 ,  n, k + 1 )  

F,v(m, n, k )  = q ' [ n ] [ l  - A 2 -  n ] u ( m ,  n -1 ,  k ) -  q'-"-"ZO(a,p - 2 - m ) u ( m  + 1 n, k -  1 )  

with the dimension 

dim W e , ,  ~ Z , Q J =  a,a,a,p. 

Now, we prove that the representation ( 6 . 1 )  is indecomposable (reducible, but not 
completely reducible), if there is an a , > 2 .  In fact, when i =  1, CL[a,a,a,] has an 
invariant subspace W, : { v ( m ,  n, k ) l ( a ,  - I ) p S  m S a,p - 1, O <  n s a2p  - 1 ,  O S  k s 
a , p - 1 )  with dimension d = ( p - l ) a , a , p z .  If there exists an invariant subspace W, 
complementary to W, i.e. W,O W, =Cl[a,a,a,], then there is a vector 

h l P - l  

U =  1 C m u ( m , n , k )  
m-X 

with Ck#O and k < ( a , - l ) p .  Actingon v by E , ,  we have 

E I " , - l ) P - L  U =  1 C , p ( m + ( a , - 1 ) p - k , n , k )  
m = I 

= 1 C , + , v ( m ' + ( a , - l ) p , n , k ) ( # O ) E  W 
"4=0 

Due to invariance of '  W,, E / " ' - ' ' p ~ k  Y E  W,, that is to say, W, n W, # {O). Then a 
contradiction appears and so an invariant complementary space for W, does not exist. 

6.2. The non-generic structure of rhe representation (5.6) 

In  order to analyse the reductions of representation (5.6) when q is a root of unity, 
the representation (5 .6)  is illustrated in figure 1 .  Each lattice ( m .  k )  in AOAB denotes 
a weight vector F ( m ,  k l A , )  and the arrows in the figure represent the actions of E, and 
F, ( i = l , 2 ) .  

On the character lines I , :  m = P I p  and I > :  k = P , p  ( P , , P 2 ~ Z t  and s - A , / p ) ,  the 
lattices ( p , p ,  k )  and ( m , P , p )  correspond to extreme vectors F ( P , p ,  klA,) and 
F(m, PZplA2) respectively. In fact, it follows from (5 .6)  that 

F , F ( P I P ,  klAO=O F A m ,  P 2 p b I ) = 0  E>F(P,P,  kIA,)=O. 

The extreme vectors F ( P , p ,  klA,) and F(m, P 2 p 1 A 2 )  define the invariant subspaces 
U ( P , ) :  { F ( m ,  n l A d s  d A l ) l m a P l d  and { F ( m ,  n l n , ) ~  4 A l ) I n a P 2 ~ 1 ,  

Figure 1. 
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respectively. U@,) corresponds to AACD and M ( p , )  corresponds to DBEF, as shown 
in figure 2. 

If U ( p , ) n M ( p J # { O ) ,  i.e. ( p I + P 2 ) p S - A , ,  then U(p , )nM(p , )  is a smaller 
invariant subspace a n d  representation (5.6) induces a representation with lower 
dimension (see figure 3). 

Now we see an example with - A ,  = - 3 p  and p = 3. On the ten-dimensional invariant 
subspace U( 1) n M(2): 

{F(3,319), F(4,319), F(5,319), F(6,319), F(3,419), F(4,4/9), F(5,4/9), 

F(3,519), F(4,519), F(3,619)1 

the representation (5.6 induces new representations 

H,  = ISe , ,  + 20e,, + 22e,, + 24e,,+ 19e,,+ 21 e,,+ 23e,, + 20e,,+ 22e,, + 21 e , ,  ,,, 
H2 = 3 ( e , , + e 2 , + e 3 , +  e 4 J  +4(es,+e,,+e,,)+5(e,,+e,,)+6e,,, 

E ,  = e2, + e,,+ e,,+ e,,+ e,,+ egM 

F ,  = -[21e2, - e,, - [2I2e6, - [21e8, 

E2 = -q- ’ (e5 ,+[21e6 ,+  e86+[21eq7+ 

F2 = - d e 2 , +  e,,fe,,+ [21eeM+ [21e7,). 

where e,, is a l ox  10 matrix unit so that (e j i )xr=6ix6i l .  
Finally, we point out that the representation (5.6) is indecomposable and its 

reduction is completely classified in this section, but for the other representations in 
section 5, the reductions are very complicated and not discussed in this paper. I n  fact, 

Figure 2, 

Figure 3. 
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for the non-generic case without introducing the Lusztig operators [7], further work 
is needed for the complete classification of reductions for any representation of any 
quantum algebra. 

Nore added in  proof After this paper w3s submitted, we received some preprints, 'representations of quantum 
group a t  root of  unity' Kac and de Concini, and RIMS (703, 709) by Jimbo er 01, in which general 
representation theory in the generic Case is fully built from a purely mathematical point of view. However, 
our main results (for indecomposable representaliam) are not covered by there works. In particular, we 
give some explicit constructions that are useful for concrete problems in physics. 
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